详细内容

中国科大在钙钛矿太阳能电池激发态载流子复合机制研究中取得新进展

      材料来源:中国科学技术大学

近日,中国科学技术大学物理学院及合肥微尺度物质科学国家研究中心国际功能材料量子设计中心(ICQD)赵瑾教授研究团队在钙钛矿太阳能电池电子空穴复合机理研究工作中取得新进展,他们利用团队自主发展的第一性原理激发态动力学程序,揭示了低频振动声子在电子空穴复合机制中的重要作用,该结果以“Low-frequency lattice phonons in halide perovskites explain high defect tolerance toward electron-hole recombination.” 为题,发表在Science Advances上,第一作者褚维斌在合肥微尺度物质科学国家研究中心取得博士学位,赵瑾教授与匹兹堡大学Wissam A. Saidi教授为共同通讯作者。

半导体材料缺陷与杂质如何影响电子空穴复合是这个领域的重要科学问题。早在19世纪50年代,著名的科学家Shockley, Read和Hall就提出了Shockley-Read-Hall (SRH)模型,在这个模型中,他们认为能量位于能隙中间的“深能级”会形成电子-空穴复合中心,多年来,半导体科学界的许多科学家都在使用这个简单的判据。然而,在SRH模型中,电声耦合效应并没有被考虑进来,而电声耦合却是电子空穴通过非辐射跃迁复合的决定性因素。在本工作中,赵瑾教授研究团队利用自主研发的第一性原理激发态动力学软件Hefei-NAMD研究了铅卤钙钛矿电池MAPbI3中缺陷对电子空穴复合的影响,准确地考虑了电声耦合、能级差、原子运动速度、电子退相干、载流子浓度等因素,发现在这个体系中,缺陷并不会形成电子空穴复合中心,出现了SRH模型完全失效的情况。通过定量的电声耦合分析发现,由于材料硬度低,无论有没有缺陷,对电子空穴复合有贡献的声子都是低频声子,对应的非绝热耦合量小,使电子空穴复合变慢,这也是铅卤钙钛矿电池虽然有很多缺陷,却仍然拥有较好的太阳能转化效率的原因。

在本工作中,Wissam A. Saidi教授负责体系缺陷结构的搭建及基态的计算,赵瑾教授课题组负责激发态动力学计算。本工作是Hefei-NAMD软件的又一重要应用,自2016年起,利用该软件发表的学术论文已接近30篇(http://staff.ustc.edu.cn/~zhaojin/code.html)

本工作受到基金委、科技部、安徽省等单位的支持。

上一篇:GaO的通道迁移率胜过Si... 下一篇:飞秒激光刻蚀技术将普通...

声明:本网站部分文章转载自网络,转发仅为更大范围传播。 转载文章版权归原作者所有,如有异议,请联系我们修改或删除。联系邮箱:lynnw@actintl.com.hk

 

Baidu
map