详细内容

天津大学封伟团队在带隙可调的新型锗硅基半导体二维原子晶体研究上取得突破

      材料来源:天津大学

近日,天津大学封伟教授团队在半导体二维原子晶体的可控制备和带隙调控研究上取得重要突破:在理论计算和结构设计的基础上,采用-H/-OH封端二元锗硅烯,首次获得了具有带隙可调控的二维层状锗硅烷(gersiloxene)。通过精确控制二元配比,实现了二维锗硅烷的带隙调控,并探索了其光催化领域的应用价值,为后续设计新型半导体二维原子晶体提供了重要的研究基础。相关研究成果在线发表于《自然·通讯》(Nature Communications)上,文章题为“Two-dimensional gersiloxenes with tunable bandgap for photocatalytic H2evolution and CO2photoreduction to CO”(DOI: 10.1038/s41467-020-15262-4)。文章第一作者为天津大学材料学院博士研究生赵付来,通讯作者为封伟教授,共同通讯作者为冯奕钰教授。

与石墨烯同族元素的二维锗烯和硅烯半导体晶体,虽然具有极高的理论载流子迁移率和独特的sp2-sp3杂化键,但是精确制备并调控其能带结构仍然是该领域重要的难点。由于不存在类似于石墨的层状体相结构,无法通过直接剥离法制备二维锗烯和硅烯半导体晶体,导致难以实现其层状结构的精确控制;更为重要的是锗烯和硅烯的零带隙特征限制了其在场效应晶体管、光电晶体管和光催化领域的应用。

氢化和合金化是调控二维半导体晶体带隙结构的两种重要途径。近年来研究表明,由于Zintl相的CaGe2和CaSi2中存在着类似于石墨烯的Ge或Si的六元蜂窝状结构,因此通过Zintl相晶体CaGe2和CaSi2的拓扑化学反应(去除Ca离子),可以直接制备得到氢化的锗烯和硅烯,即锗烷(GeH)和硅烷(SiH),但是通过可控掺杂实现锗烷和硅烷的带隙调控仍然鲜有报道。针对该难点,封伟团队通过对CaGe2进行Si掺杂,制备了具有精确配比的Ca(Ge1-xSix)2(x = 0.1-0.9)合金,通过拓扑插层反应实现了-H/-OH封端,获得了具有一系列不同掺杂比例的蜂窝状二维锗硅烷合金。晶体结构模型的理论计算结果表明二维锗硅烷为直接带隙半导体材料,其带隙类型不依赖于层数和Si掺杂的比例。如图1所示,通过控制Si元素的掺杂量(x值)可以实现带隙结构的精确调控,结果显示二维锗硅烷的带隙随掺杂量的增加而提高,当x从0.1提高到0.9时,二维锗硅烷的带隙从1.8提升到2.57 eV。

二维锗硅烷兼具可调控能带结构、宽光谱(从紫外区到可见光区)响应和优异的光催化性能,是未来制备纳米光电器件的理想材料之一。该研究首次实现了掺杂精确调控锗硅类IVA族二维原子晶体半导体的能带结构,将为未来新型半导体二维原子晶体材料的合成、设计、电子结构调控以及光电性能提升提供重要的材料基础和技术支撑。

上一篇:立方体GaN:应对绿光能... 下一篇:瑞士洛桑联邦理工学院开...

声明:本网站部分文章转载自网络,转发仅为更大范围传播。 转载文章版权归原作者所有,如有异议,请联系我们修改或删除。联系邮箱:lynnw@actintl.com.hk

 

Baidu
map